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Correlations in interacting systems with a network topology
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We study pair correlations in interacting systems placed on complex networks. We show that usually in these
systems, pair correlations between interacting objects (e.g., spins), separated by a distance €, decay, on aver-
age, faster than 1/(€z,). Here z; is the mean number of the €th nearest neighbors of a vertex in a network. This
behavior, in particular, leads to a dramatic weakening of correlations between second and more distant neigh-
bors on networks with fat-tailed degree distributions, which have a divergent number z, in the infinite network
limit. In large networks of this kind, only pair correlations between the nearest neighbors are actually observ-
able. We find the pair correlation function of the Ising model on a complex network. This exact result is

confirmed by a phenomenological approach.
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I. INTRODUCTION

The generic features of real-world networks (the Internet,
the WWW, biological, social and economical networks and
many others) are a complex organization of their connections
and the small-world phenomenon [1-8]. In the networks
with the small-world effect, a mean intervertex distance
grows with a total number of vertices, N, slower than any
power of N, e.g., grows as In N [9]. Concerning economical
and social networks, the small-world property is often con-
sidered as an evidence for the growing interrelations and
globalization.

Many of the real-world networks are formed from inter-
acting objects and demonstrate complicated dynamics. The
dependence of correlations between interacting objects on
time and distance provides a useful information about the
network dynamics. In the present paper we discuss general
properties of correlations between a pair of interacting ob-
jects on a complex network. Recall that in interacting sys-
tems on lattices, with a few exceptions, pair correlations de-
crease exponentially with distance apart from a critical point,
where the decrease is power law. Naively, one might expect
that the small-world property of a network would enhance
pair correlations between distant objects in comparison to
lattices. However, it is not the case. We demonstrate that
correlations between €th nearest neighbors, on average, de-
cay with € as 1/(€z,) or faster. In networks where the mean
intervertex separation €(N)~1In N, this corresponds to the
exponential decay of correlations with € (even at the critical
point). However, in networks with a divergent mean number
of the second nearest neighbors [where €(N) grows slower
than In N], we observe a dramatic weakening of pair corre-
lations between the second and more distant nearest neigh-
bors. In these networks, only the nearest neighbors are
strongly correlated, while the correlations between more dis-
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tant vertices are suppressed and approach zero in the infinite
network limit.

In Sec. II we consider pair correlations in an interacting
system defined on the top of a complex network in the
framework of a phenomenological approach. This approach
allows us to understand general properties of pair correla-
tions irrespective of details of an interacting system and the
nature of interactions. In Sec. III we support these results by
calculations of the static pair correlation function of the Ising
model on a complex network (more precisely, the configura-
tion model of a network [10]).

II. PHENOMENOLOGICAL APPROACH

Let a quantity X,(r) describe a dynamic process on a net-
work, where the index i labels vertices, and ¢ is time. x;(¢)
= X;(r)—(X;) describes fluctuations around the average value
(X;). In an equilibrium state, pair correlations between two
arbitrary vertices i and j may be characterized by the follow-
ing correlation function:

0]
Gijlty,1,) = lBIJO xi(t+)x;(t + tr)dt = (x(t)x,(t)).

(1)

In the present section the brackets (---) denote an average
over the observation time #,. The latter must be much larger
than the maximum relaxation time of the system under con-
sideration. We have G,(t,,1,)=G;(t;—t,) in the limit 75— .
In the framework of the Hamiltonian dynamics, one can in-
troduce a generalized field H,(¢) conjugated to X,(r). The
function
lo
Xij(ti = 1) =t51f Ix(t+ 1)) OH (1 + tp)dt

0

is a generalized nonlocal susceptibility which characterizes
the averaged response of x;(;) at time ¢, on a field applied at
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a vertex j at time #,. There is a simple relationship between
G;(1) and x;(t),

Gj(1) = x;(1), (3)

where the coefficient of the proportionality is not important
for our purpose.

In the general case, the total susceptibility x(z) per vertex
has a finite value in the limit N— o, where N is the total
number of vertices in the network,

1o/ oxry)
X(f1_12)=;]22 <m>
(4)

i=1 j=1
The susceptibility x(z) may diverge only at a critical point of
a phase transition. We rewrite Eq. (4) as follows:

=0(1).

H=H,==H

1
x0=33 (0 + X x4

i jzfijzl j:€,v_/:2

Xii(1) + ) (5)
Here, {;; denotes a distance between vertices i and j. The first
sum in the parentheses is a sum over the nearest neighbors j
of a vertex i, i.e., €,~j:1. The second sum is over the second
nearest neighbors, i.e., € ,-j:2, and so on. We define the aver-
age value of x;(t) at €;;=¢:

> Xi(t) > Xi(t)

i,jil; =t ijil;=C
x(t, €)= ’E T ]NZ : (6)
€
i,j:(,iJ:(

where the sums are over all pairs of vertices with the inter-

vertex distance €;;=¢. 70=N"3; j-¢.=¢1 is the mean number
. Sy

of €th nearest neighbors. Consequently,

x(0) =2 zox(t, €), (7)
€

where zp=1 and x(z,0) is the average local susceptibility. In
the case of a ferromagnetic interaction the susceptibility
x(z,€) is positive, x(z,€)=0. The condition of convergence
of the sum in Eq. (7) leads to the following restriction on the
magnitude of x(z, €):

x(t, €) < 0<L> (8)
¢ ¢

It is important that in the general case, z; is a function of the

network size N. So, Eq. (8) shows how the nonlocal suscep-

tibility (and spacial correlations) varies with N.

In systems where signs of interactions vary at random, the
nonlocal susceptibilities x;;(r) have random signs. In this
case Eq. (8) is not valid. Averaging over all pairs of vertices
i,j with a given (f,»j:ﬂ, we arrive at

(b= O] < 0. ©)

In accordance to Eq. (3), the € dependence of the average
correlation function G(z,€) is the same as for the average
susceptibility x(z, €), i.e., it is described by Egs. (8) or (9).

In general, in a network with a finite second moment
>k*P(k) of the degree distribution P(k), the mean interver-
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tex distance €(N) increases with N as In N. In turn, the mean
numbers z, of €th nearest neighbors grow exponentially with
{. In particular, in an uncorrelated random network (without
degree-degree correlations between nearest neighbor verti-
ces), we have z,=z,(z,/2,)""" where z,=Sk(k—1)P(k) [11].
This relationship is also valid for a regular Bethe lattice and
a Cayley tree. In accordance with Eq. (8), the nonlocal sus-
ceptibility and pair correlations decrease exponentially with
€ x(t,€),G(t, €)cexp(=(€=1)/&). In this case the correla-
tion length is

R B 0\Y]
In(zp/z;)) InN’

(10)

This equation demonstrates that & is determined (or more
precisely, restricted from above) by the structure of a net-
work.

Essentially different situation takes place when the degree
distribution is fat-tailed, and its second and higher moments
diverge at N— o, so that z,~.;(N— o) —o0. Behavior of the
functions z,(N) at large N depends on a specific network
model [12,13]. In networks of this kind the mean intervertex
distance €(N) increases slower than In N. In particular, in
scale-free networks, this corresponds to the degree distribu-
tion P(k)~k~” with exponent y<3. Consequently, accord-
ing to Eq. (8) or Eq. (9), pair correlations between the second
and more distant nearest neighbors vanish in the limit N
— 0, Only pair correlations between the nearest neighbors,
€=1, are observable in this limit.

When the second moment of the degree distribution di-
verges, the relationship z,=z,(z,/z;)¢"" is valid only if the
cutoff of the degree distribution increases with N sufficiently
slowly. Otherwise, z, grows with € nonexponentially. In this
situation, at large but finite N, the decay of G(z, €) with € is
also nonexponential. And as a result, the notion of “correla-
tion length” cannot be applied.

We stress that the conclusions of this section are valid for
any random network, including networks with high cluster-
ing and various correlations.

III. CORRELATIONS IN THE ISING MODEL

Recent investigations have revealed that the critical be-
havior of the Ising and Potts models on complex networks
strongly differs from the standard mean-field behavior on a
regular lattice [ 14-20]. Let us analyze pair correlations in the
Ising model on an uncorrelated random complex network.

A. The model
We consider the ferromagnetic Ising model,
H=_JESiSj_2HiSi7 (11)
(ij) i
where S;==+1, and H, is a local magnetic field at a vertex i on

an uncorrelated random complex network. The sum is over
edges. The static pair-correlation function

G;= <SiSj> - <Si><Sj> (12)

is related to the nonlocal magnetic susceptibility x;;,
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Xij = 0M/dh; =BG, (13)
where B=1/T, T is temperature, M;=(S;). In this section
(-++) means the statistical average with the Hamiltonian H.

As a substrate, we use the standard model of an uncorre-
lated random network—the configuration model [10]. This is
the maximally random graph with a given degree distribution
or, as it is called in graph theory, a labelled random graph
with a given degree sequence. It is important that uncorre-
lated networks have a locally treelike structure. In the large
size limit N— oo, the probability to find a loop of a finite
length, which passes through a given vertex, tends to zero.
This is valid for a random uncorrelated network with a finite
second moment of degree distribution. Furthermore, when
the second moment diverges, loops may be neglected in the
large size limit if the cutoff of degree distribution increases
sufficiently slowly with increasing N (for more detail, see
Ref. [6] and the recent paper [21]). In the configuration
model, only loops of length much greater than €¢(N) are nu-
merous. Equation (10) shows that the correlation length is
much smaller than €(N). This allows us to neglect loops.

An uncorrelated random network may be considered as a
random Bethe lattice, which, by definition, has no boundary.
In contrast to a Bethe lattice, a Cayley tree contains bound-
ary vertices which are dead ends [22].

B. How to solve the Ising model on a treelike graph

In order to solve a interacting model on a treelike network
we use an effective approach which was applied to the Ising
and Potts models on regular [22,23] and random [15,24] Be-
the lattices.

Consider an arbitrary treelike graph. Consider a spin S;
with k; adjacent spins S;, j=1,2, ... ,k;. The vertex i may be
treated as a root of a tree. In turn, a nearest neighboring
vertex j may be treated as a root of a subtree which grows
from the vertex i. In order to characterize this subtree we
introduce a quantity

gi(S)= > exp(ﬁJE S, S+ BISS; + B Hnsn) .

{Sn}=i 1 (nm) n
(14)

The indices n and m run over spins that belong to the subtree
including the spin S;.

We introduce k; parameters x
vertex i,

s j=1,2,...k; for each

xingij(_ 1)/gij(+ 1). (15)

Each edge of the graph under consideration is characterized
by two parameters, x;; and x;. In a general case, we have
Xx;j # xj; because x;; and x;; characterize different subtrees. In
sum, the Ising model on an arbitrary treelike graph is de-
scribed by 2L=2k; parameters x;;. L is the total number of
edges of the graph.

Using Egs. (14) and (15), the parameter x;; may be related
to parameters Xxj, =1,2,... ,kj, which characterize edges
outgoing from the nearest neighboring vertex j [22],
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ki1
x,»j=y(Hj,H le>. (16)
=1

The index [ numerates the first nearest neighbors of the ver-
tex j, which in turn are second neighbors of the vertex i, i.e.,
¢;=1 and ¢;=2. The function y(H,x) in Eq. (16) is given by
the equation

) o IHHB 4 SU-H)B, -
X)) =" .
Y QUHB | (~I-H)B,.

In order to find x;;, it is necessary to solve self-consistently a
set of 2L equations (16). For an arbitrary treelike graph,
these equations may be solved numerically, e.g., by use of
the population dynamic algorithm, see Ref. [20] where this
method has been applied to the Potts model on a treelike
graph.

Observable thermodynamic quantities of the Ising model
may be written as functions of the parameters x;;. For ex-
ample, a magnetic moment M; is given by the following
equation:

ki ki
MiZ(QZBHi—HXij)/<eZBHi+ H.Xl]) (18)
j=1

J=1

Finally, observables should be averaged over the ensemble of
uncorrelated random graphs with a given degree distribution
function P(k).

C. Derivation of the pair correlation function

Let us find a nonlocal susceptibility x;;, Eq. (13), for the
distance €;;=¢ from i to j. On a treelike graph there is the
only shortest path which connects vertices i and j. It starts
from i, then goes through vertices iy, i,,...,i,_; and ends at
J. Using Egs. (18) and (16) we get an exact equation,

oM, 9%ii 0%; i Ox; ;,  OX

iy 9H;

fe_1J

L= 19
Xij ox;; 0x; : OX; (19)

iiy iiy iyiy

ox

At first, for the purpose of comparison, we find a nonlocal
susceptibility y;; of a regular Bethe lattice with a coordina-
tion number k.

In a uniform magnetic field H,=H,=---=H all vertices
and all edges in a regular Bethe lattice are equivalent. There-
fore, the parameters X;; are equal, i.e., X;j=X. Equation (16)
takes the form

x=y(H,x1). (20)

This equation determines x as a function of 7 and H. From
Egs. (18)-(20) we get

x(€)=— . (2D

1@( 1
k dx

ﬁy(H,xk_l) )6—1 o7y(H,xk_1)
(k=1) ox oH

where M= (e?PH —xK)/ (2BH +x¥).
At zero magnetic field, H=0, Eq. (21) gives
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x(€) =

48x* ( 2x*2 sinh(2JB) )f 22

(1 4252\ (/P + e7/Bxk1)?

At temperatures 7 above the critical temperature 7,
=2J/In[k/(k-2)] of the ferromagnetic phase transition, Eq.
(20) has the only solution x=1. For this solution, Eq. (22)
gives

x(€) = BG(1) = B tanh(JB). (23)

This result was obtained for a Cayley tree [25] and regular
Bethe lattices [23]. Recall that there is no phase transition in
a spin model on a Cayley tree due to the effect of boundary
spins.

In the ferromagnetic phase at 7<<T, or at an arbitrary T
but H+# 0, Eq. (20) has a nontrivial solution x<1.

In accordance with Egs. (22) and (23) the nonlocal sus-
ceptibility y(€) of a regular Bethe lattice decays exponen-
tially with €, y(€) <exp(—€/&). The correlation length & de-
pends on 7 and H but does not depend on N. Moreover, ¢ has
a finite value at all 7, including 7=T,.

Now let us consider an uncorrelated random network. The
Ising model undergoes a ferromagnetic phase transition at a
critical temperature T,=2J/In[{k*)/({(k*)—2(k))] [15,16]. In
the paramagnetic phase at T=T, and H=0, Eq. (16) has only
the trivial solution x;=1. From Eq. (19) we find that the
nonlocal susceptibility y;;(€;=€) has the same temperature
dependence, Eq. (23), as that for a regular Bethe lattice or a
Cayley tree.

We average the susceptibility x,;(€;;=€), Eq. (19), over
the ensemble of uncorrelated random graphs with a given
degree distribution function P(k),

(6) _ij(ezj_ € Ekz ]{2 EX:]
ki ky -1 kj
-1
y [P(k»kj(n PlkKully = 1) ) P(k»k,»] o
21 n=1 22 21

The quantity in the square brackets is the probability that a
vertex i of degree k; is connected with a vertex j of degree k;
by a path that goes through vertices of degrees ki,
ky,...,ke_;. Either at H#0 or T<T,., an approximate ex-
pression for x(€) may be obtained in the framework of the
following approach proposed in Ref. [15]. We introduce
positive random parameters /;; instead of the parameters x;;,

x;;=exp(=h;;). Assuming that the system is sufficiently close
to the critical point, we use the following ansatz [15,24]:

k

> by~ kh+ O(k'), (25)
j=1

where h=2,%h;;/ Nz, is the mean value of the parameter h;;
on the network Applylng the ansatz (25) to Eq. (16), we get
a self-consistent equation for #,
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1
h=——> P(k)kIn y(H,e *Dh). (26)
21k

The parameter 4 plays the role of the order parameter. We get
h=0 in the paramagnetic phase, T >T,, at zero magnetic
field H=0, while h#0 at H#0 or T<T,. Note that this
ansatz gives an exact description of the critical behavior of
the Ising model [15,16]. Far from T., one must take into
account the fluctuations of h,], which, however, can be made
only numerically as in Ref. [20]. With the ansatz (25), we get

2\
x(€) = (—) AB"!C, (27)
22
where
28_(k 1)h
=- Z% kP(k)—Hﬁ_kh)z, (28)
k(k=1)P(k) 2 *2"sinh(2JB)

B= 2 ) (29)
. Z (e(J+H)B+e—(]+H)B—(k—l)h)2

1 4B D" sinh(2J8)
€=- 2_121:' kP (k) (eUHB . g UrH)B=(k-Th)2* (30)

The quantities A, B, and C are functions of 7" and H. They
have a finite value in the limit N — % even for a network with
divergent second moment z,. The convergence of the sums
over k in these equations is ensured by the exponential mul-
tiplier e ¥, This conclusion does not depend on the fact that
we used the approximation (25). Indeed, substituting Eq.
(19) into Eq. (24), one can prove that all the sums over
degrees k, converge both in the ordered state and at H # 0.

For the regular Bethe lattice we have P(k)=d k. In this
case Egs. (27)—(30) are reduced to Eqgs. (21)—(23).

Notice that Egs. (27)—(30) were derived for an uncorre-
lated random network with a locally treelike structure. Only
in this case the relationship zy=z;(z,/2;)¢"! is valid. A net-
work with divergent z,(N) also may have a locally treelike
structure if the cutoff of the degree increases with N suffi-
ciently slowly. This depends on a specific network model
(see also a discussion at the end of Sec. II).

Equation (27) shows that x({)cexp[—(€—1)/&] with &
=[z,/(z;B)] in agreement with the result obtained in the pre-
ceding section [compare Egs. (27) and (8)]. If the second
moment z, of the degree distribution has a finite value in the
limit N — o, then the correlation length & is also finite as well
as for the regular Bethe lattice. If z, diverges in the infinite
size limit, then £é— 0. Therefore, long-range pair correlations
vanish, G({ =2) « y(£ =2)—0.

IV. DISCUSSION AND CONCLUSIONS

Our analysis may be generalized to correlated networks.
Many natural networks exhibit correlations between degrees
of adjacent vertices, see, for example, Ref. [26]. Note that in
large uncorrelated networks, the divergence of the mean
number z, of the €th nearest neighbor can occur only simul-
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taneously at all €=2. In contrast, in large correlated net-
works, it is possible in principle that, say, z,, z3 is finite and
only z,~4 diverges. In this case, pair correlations are observ-
able between the first, second, and third nearest neighbors
and vanish starting from the fourth nearest neighbors in the
infinite size limit N —ce.

It is important to note that the conclusions obtained in
Sec. II in the framework of phenomenological approach are
quite general and valid for networks with high clustering and
various structural correlations. Moreover, these conclusions
are valid for a wide range of interactions.

We discussed only the pair correlations between interact-
ing objects (e.g., spins) separated by an intervertex distance
€. One should emphasize that the pair correlations in inter-
acting systems on small worlds, unlike lattices, never show
critical behavior. Indeed, even at the critical point of an in-
teracting system on a network with the small-world phenom-
enon, we observe an exponential decay of the pair correla-
tions. Nonetheless, other characteristics of correlations in
interacting systems on networks may demonstrate a critical
feature. For example, consider the following quantity. The
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distribution of the full response of a system to a small local
field is P(g)=2,0(Z;x,;;—¢), where d(¢) is the delta function.
This distribution is a rapidly decreasing function both below
and above a phase transition on a network. On the other
hand, at the critical point, P(g) is a power law [11,27].

One can conclude that a network structure of an interact-
ing system strongly influences the dependence of pair corre-
lations on distance between interacting objects. We have
demonstrated that the compactness of a network substrate
dramatically suppresses the pair correlations and essentially
determines their rapid decay.
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